organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[4-(Benzyloxy)phenyl]-1-(2-furyl)-3hydroxyprop-2-en-1-one

Chun-Yang Zheng,^a* Dun-Jia Wang^b and Ling Fan^b

^aHubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China, and ^bCollege of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail: zcy800204@163.com

Received 3 November 2008; accepted 7 November 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.147; data-to-parameter ratio = 15.6.

In the crystal structure of the title compound, $C_{20}H_{16}O_4$, which is in the enol form, the central benzene ring makes dihedral angles of 63.42 (9) and 5.19 (10)° with the phenyl and furan rings, respectively. There is a short strong intramolecular O– $H \cdots O$ hydrogen bond.

Related literature

For hydrogen bonds in 1,3-diketones, see: Bertolasi *et al.* (1991); Gilli *et al.* (2004); Vila *et al.* (1991). For 1,3-diketones as ligands, see: Baskar & Roesky (2005); Bassett *et al.* (2004); Jang *et al.* (2006); Soldatov *et al.* (2003).

Experimental

Crystal data	
$C_{20}H_{16}O_4$	a = 5.8927 (6) Å
$M_r = 320.33$	b = 11.3365 (11) Å
Triclinic, $P\overline{1}$	c = 13.3039 (13) Å

$\alpha = 112.111 \ (3)^{\circ}$	
$\beta = 96.687 \ (3)^{\circ}$	
$\gamma = 98.638 \ (3)^{\circ}$	
$V = 799.39 (14) \text{ Å}^3$	
Z = 2	

Data collection

Bruker SMART APEX CCD area-	6611 measured reflections
detector diffractometer	3439 independent reflections
Absorption correction: multi-scan	2268 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.078$
$T_{\rm min} = 0.978, \ T_{\rm max} = 0.983$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of
$wR(F^2) = 0.147$	independent and constrained
S = 0.95	refinement
3439 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.32 \times 0.20 \times 0.12$ mm

T = 298 (2) K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O2-H2A\cdots O3$	1.15 (3)	1.38 (3)	2.5030 (16)	162 (2)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors are grateful to Hubei Normal University for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2357).

References

Baskar, V. & Roesky, P. W. (2005). Z. Anorg. Allg. Chem. 631, 2782–2785.

- Bassett, A. P., Magennis, S. W., Glover, P. B., Lewis, D. J., Spencer, N., Parsons, S., Williams, R. M., Cola, L. D. & Pikramenou, Z. (2004). *J. Am. Chem. Soc.* 126, 9413–9424.
- Bertolasi, V., Cilli, P., Ferretti, V. & Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917–4925.
- Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. & Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845–3855.
- Jang, H., Shin, C.-H., Jung, B.-J., Kim, D.-H., Shim, H.-K. & Do, Y. (2006). *Eur. J. Inorg. Chem.* 4, 718–725.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Soldatov, D. V., Zanina, A. S., Enright, G. D., Ratcliffe, C. I. & Ripmeester, J. A. (2003). *Cryst. Growth Des.* 3, 1005–1013.
- Vila, A. J., Lagier, C. M. & Olivieri, A. C. (1991). J. Phys. Chem. 95, 5069-5073.

supplementary materials

Acta Cryst. (2008). E64, o2326 [doi:10.1107/S1600536808036659]

3-[4-(Benzyloxy)phenyl]-1-(2-furyl)-3-hydroxyprop-2-en-1-one

C.-Y. Zheng, D.-J. Wang and L. Fan

Comment

1,3-Diketones in their enolic tautomeric forms have been extensively studied owing to their ability to form strong intermolecular or intramolecular hydrogen bonds (Vila *et al.*, 1991; Bertolasi *et al.*, 1991; Gilli *et al.*, 2004). They are among the most studied ligands in the chemistry of metal complexes and used widely in the chemistry of metallocomplexes (Baskar & Roesky, 2005; Bassett *et al.*, 2004; Jang *et al.*, 2006; Soldatov *et al.*, 2003).

The crystal structure of the title compound, (I), is in the enol form stabilized by an intramolecular hydrogen bond (Fig. 1). The distances of O2—H2 and O3···H2 are 1.15 (3) and 1.38 (3) Å, respectively. The central benzene ring (C8—C13) makes dihedral angles of 63.42 and 5.19° with two aromatic rings (C1—C6) and (C17—O4), respectively. The crystal packing is stabilized by van der Waals forces.

Experimental

1-[4-(Benzyloxy)phenyl]ethanone (2.26 g, 0.01 mol), methyl furan-2-carboxylate (1.26 g, 0.01 mol), NaNH₂ (0.78 g, 0.02 mol) and dry ether (60 ml) were placed into round bottom flask. The mixture was stirred for 6 h at room temperature under a blanket of nitrogen, acidified with dilute hydrochloric acid, and stirring was continued until all solids dissolved. The ether layer was separated and washed with saturated NaHCO₃ solution, dried over anhydrous Na₂SO₄ and was removed by evaporation. The residual solid was recrystallized from an ethanol solution to give the title compound (I) (yield 1.75 g, 54.7%; m.p. 403 K). Crystals suitable for X-ray diffraction were grown by slow evaporation of a CH₂Cl₂—EtOH (1:4) solution at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93 to 0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$. The H atom of the hydroxyl group was located in a difference Fourier map and its position was refined freely, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates an intramolecular hydrogen bond.

3-[4-(Benzyloxy)phenyl]-1-(2-furyl)-3-hydroxyprop-2-en-1-one

Crystal data	
$C_{20}H_{16}O_4$	Z = 2
$M_r = 320.33$	$F_{000} = 336$
Triclinic, P1	$D_{\rm x} = 1.331 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Melting point: 403 K
<i>a</i> = 5.8927 (6) Å	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>b</i> = 11.3365 (11) Å	Cell parameters from 1997 reflections
c = 13.3039 (13) Å	$\theta = 3.1 - 26.1^{\circ}$
$\alpha = 112.111 \ (3)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 96.687 \ (3)^{\circ}$	T = 298 (2) K
$\gamma = 98.638 \ (3)^{\circ}$	Block, yellow
$V = 799.39 (14) \text{ Å}^3$	$0.32 \times 0.20 \times 0.12 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	3439 independent reflections
Radiation source: fine-focus sealed tube	2268 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.078$
T = 298(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 7$
$T_{\min} = 0.978, \ T_{\max} = 0.983$	$k = -14 \rightarrow 14$
6611 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.147$	$w = 1/[\sigma^2(F_o^2) + (0.0676P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.95	$(\Delta/\sigma)_{\rm max} < 0.001$
3439 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.29 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	Uiso*/Ueq
C1	-0.1919 (3)	0.94140 (17)	-0.21175 (14)	0.0561 (4)
H1	-0.2852	0.9490	-0.1588	0.067*
C2	-0.2151 (3)	1.01001 (18)	-0.27760 (15)	0.0624 (5)
H2	-0.3229	1.0636	-0.2686	0.075*
C3	-0.0791 (3)	0.99904 (18)	-0.35624 (13)	0.0628 (5)
H3	-0.0943	1.0449	-0.4008	0.075*
C4	0.0791 (4)	0.9200 (2)	-0.36863 (14)	0.0707 (5)
H4	0.1716	0.9124	-0.4219	0.085*
C5	0.1021 (3)	0.85205 (18)	-0.30303 (14)	0.0625 (5)
Н5	0.2100	0.7986	-0.3124	0.075*
C6	-0.0332 (3)	0.86224 (15)	-0.22321 (12)	0.0470 (4)
C7	-0.0042 (3)	0.78860 (17)	-0.15223 (14)	0.0543 (4)
H7A	-0.1266	0.7946	-0.1088	0.065*
H7B	-0.0133	0.6975	-0.1976	0.065*
C8	0.2985 (3)	0.78337 (14)	-0.01798 (12)	0.0437 (4)
С9	0.1650 (3)	0.67956 (17)	-0.00705 (15)	0.0572 (5)
H9	0.0099	0.6479	-0.0432	0.069*
C10	0.2624 (3)	0.62314 (17)	0.05756 (14)	0.0566 (5)
H10	0.1708	0.5530	0.0641	0.068*
C11	0.4923 (3)	0.66708 (14)	0.11326 (12)	0.0430 (4)
C12	0.6215 (3)	0.77425 (15)	0.10371 (12)	0.0487 (4)
H12	0.7755	0.8073	0.1413	0.058*
C13	0.5265 (3)	0.83230 (15)	0.04000 (13)	0.0493 (4)
H13	0.6155	0.9047	0.0357	0.059*
C14	0.5877 (3)	0.60034 (15)	0.17882 (12)	0.0459 (4)
C15	0.8145 (3)	0.63971 (16)	0.23933 (13)	0.0493 (4)
H15	0.9149	0.7099	0.2370	0.059*
C16	0.8939 (3)	0.57587 (17)	0.30329 (13)	0.0523 (4)
C17	1.1263 (3)	0.62181 (18)	0.37217 (13)	0.0561 (4)
C18	1.2389 (4)	0.5838 (2)	0.44496 (16)	0.0779 (6)
H18	1.1821	0.5149	0.4632	0.094*
C19	1.4595 (4)	0.6689 (3)	0.48793 (17)	0.0878 (7)
H19	1.5767	0.6671	0.5402	0.105*

supplementary materials

C20	1.4681 (4)	0.7517 (2)	0.43989 (17)	0.0821 (7)
H20	1.5957	0.8185	0.4537	0.099*
O1	0.22079 (19)	0.84506 (10)	-0.08083 (9)	0.0549 (3)
O2	0.4480 (2)	0.49997 (11)	0.17879 (10)	0.0593 (3)
O3	0.7661 (2)	0.47547 (13)	0.30691 (11)	0.0682 (4)
O4	1.2673 (2)	0.72692 (13)	0.36792 (9)	0.0661 (4)
H2A	0.573 (4)	0.473 (2)	0.2360 (18)	0.099*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0612 (10)	0.0584 (11)	0.0545 (10)	0.0197 (8)	0.0132 (8)	0.0256 (9)
C2	0.0691 (11)	0.0551 (11)	0.0649 (11)	0.0249 (9)	0.0015 (9)	0.0249 (9)
C3	0.0835 (13)	0.0586 (11)	0.0460 (10)	0.0101 (10)	-0.0026 (9)	0.0268 (9)
C4	0.0881 (13)	0.0858 (15)	0.0494 (10)	0.0291 (11)	0.0207 (10)	0.0330 (10)
C5	0.0706 (11)	0.0704 (12)	0.0559 (10)	0.0315 (9)	0.0166 (9)	0.0281 (9)
C6	0.0533 (9)	0.0446 (9)	0.0408 (8)	0.0094 (7)	0.0023 (7)	0.0167 (7)
C7	0.0536 (9)	0.0518 (10)	0.0594 (10)	0.0085 (7)	0.0032 (8)	0.0277 (8)
C8	0.0538 (9)	0.0380 (8)	0.0411 (8)	0.0099 (7)	0.0076 (7)	0.0181 (7)
C9	0.0489 (9)	0.0528 (10)	0.0709 (11)	-0.0024 (7)	-0.0039 (8)	0.0354 (9)
C10	0.0540 (10)	0.0505 (10)	0.0702 (11)	-0.0013 (8)	0.0000 (8)	0.0375 (9)
C11	0.0491 (8)	0.0407 (8)	0.0413 (8)	0.0096 (7)	0.0095 (7)	0.0183 (7)
C12	0.0481 (9)	0.0494 (9)	0.0481 (9)	0.0015 (7)	0.0031 (7)	0.0239 (8)
C13	0.0536 (9)	0.0434 (9)	0.0515 (9)	-0.0011 (7)	0.0056 (7)	0.0251 (8)
C14	0.0568 (9)	0.0432 (9)	0.0421 (8)	0.0121 (7)	0.0144 (7)	0.0198 (7)
C15	0.0556 (9)	0.0494 (9)	0.0468 (9)	0.0114 (7)	0.0077 (7)	0.0239 (8)
C16	0.0633 (10)	0.0554 (11)	0.0463 (9)	0.0246 (8)	0.0171 (8)	0.0230 (8)
C17	0.0650 (10)	0.0659 (12)	0.0482 (10)	0.0312 (9)	0.0164 (8)	0.0267 (9)
C18	0.0854 (15)	0.1060 (17)	0.0697 (12)	0.0522 (13)	0.0222 (11)	0.0510 (12)
C19	0.0787 (15)	0.128 (2)	0.0584 (13)	0.0552 (14)	0.0019 (10)	0.0304 (13)
C20	0.0648 (12)	0.0965 (17)	0.0662 (13)	0.0287 (11)	-0.0040 (10)	0.0124 (12)
01	0.0627 (7)	0.0467 (7)	0.0560 (7)	0.0009 (5)	-0.0054 (5)	0.0302 (6)
O2	0.0605 (7)	0.0568 (7)	0.0712 (8)	0.0060 (6)	0.0086 (6)	0.0408 (7)
O3	0.0772 (9)	0.0687 (9)	0.0799 (9)	0.0223 (7)	0.0166 (7)	0.0498 (7)
O4	0.0671 (8)	0.0683 (9)	0.0576 (8)	0.0189 (7)	0.0014 (6)	0.0208 (7)

Geometric parameters (Å, °)

C1—C6	1.373 (2)	С10—Н10	0.9300
C1—C2	1.381 (2)	C11—C12	1.390 (2)
C1—H1	0.9300	C11—C14	1.469 (2)
C2—C3	1.371 (3)	C12—C13	1.373 (2)
С2—Н2	0.9300	C12—H12	0.9300
C3—C4	1.369 (3)	C13—H13	0.9300
С3—Н3	0.9300	C14—O2	1.3000 (19)
C4—C5	1.373 (2)	C14—C15	1.391 (2)
C4—H4	0.9300	C15—C16	1.393 (2)
C5—C6	1.382 (2)	C15—H15	0.9300
С5—Н5	0.9300	C16—O3	1.287 (2)

C6—C7	1 489 (2)	C16—C17	1 456 (3)
C7—O1	1.4364 (19)	C17—C18	1.347 (2)
С7—Н7А	0 9700	C17—O4	1 371 (2)
С7—Н7В	0 9700	C18—C19	1 408 (3)
C8—01	1 3583 (17)	C18—H18	0.9300
C8-C9	1 379 (2)	$C_{19} - C_{20}$	1 318 (3)
C_{8} C_{13}	1.375 (2)	C19_H19	0.9300
C_{0} C_{10}	1.300(2) 1.374(2)		1 352 (2)
C_{0} H0	0.0300	C20 H20	0.9300
C10 C11	1 295 (2)	02 424	1.15(2)
	1.365 (2)		1.15 (5)
C6C1C2	121.06 (16)	C10-C11-C14	119.56 (13)
	119.5	C12 - C11 - C14	125.34(14)
C2C1H1	119.5		121.39 (14)
	119.91 (17)	C13C12H12	119.3
C3—C2—H2	120.0	С11—С12—Н12	119.3
C1—C2—H2	120.0	C12—C13—C8	120.24 (14)
C4—C3—C2	119.52 (16)	C12—C13—H13	119.9
С4—С3—Н3	120.2	C8—C13—H13	119.9
С2—С3—Н3	120.2	O2—C14—C15	119.95 (14)
C3—C4—C5	120.50 (17)	O2-C14-C11	116.68 (14)
C3—C4—H4	119.8	C15-C14-C11	123.37 (14)
С5—С4—Н4	119.8	C14—C15—C16	121.14 (15)
C4—C5—C6	120.71 (17)	C14—C15—H15	119.4
С4—С5—Н5	119.6	C16—C15—H15	119.4
С6—С5—Н5	119.6	O3—C16—C15	122.40 (16)
C1—C6—C5	118.30 (15)	O3—C16—C17	116.31 (15)
C1—C6—C7	121.80 (15)	C15—C16—C17	121.28 (16)
C5—C6—C7	119.90 (15)	C18—C17—O4	109.43 (17)
O1—C7—C6	107.58 (12)	C18—C17—C16	133.19 (19)
O1—C7—H7A	110.2	O4—C17—C16	117.37 (14)
С6—С7—Н7А	110.2	C17—C18—C19	106.5 (2)
O1—C7—H7B	110.2	С17—С18—Н18	126.7
С6—С7—Н7В	110.2	C19—C18—H18	126.7
H7A—C7—H7B	108.5	C20—C19—C18	106.89 (19)
O1—C8—C9	124.48 (14)	С20—С19—Н19	126.6
O1—C8—C13	116.21 (13)	С18—С19—Н19	126.6
C9—C8—C13	119.29 (14)	C19—C20—O4	111.2 (2)
C10—C9—C8	119.65 (15)	С19—С20—Н20	124.4
С10—С9—Н9	120.2	04—C20—H20	124 4
С8—С9—Н9	120.2	C8 - 01 - C7	118.05 (11)
C9—C10—C11	122.26 (15)	$C14 - O^2 - H^2A$	99.0 (11)
C9—C10—H10	118.9	C16-O3-H2A	95.5 (9)
C11_C10_H10	118.9	$C_{10} = 0.05 = 112.13$	105.94 (16)
C_{10} C_{11} C_{12}	117 10 (14)	020 07 01/	105.77 (10)
	(17)	C12 C11 C14 O2	170 05 (14)
0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0.5 (5)	C12 - C11 - C14 - C12	-1/8.85 (14)
$U_1 - U_2 - U_3 - U_4$	-0.1(3)	C10-C11-C14-C15	-1/8.45 (15)
U2 - U3 - U4 - U5	0.0 (3)	C12—C11—C14—C15	1.4 (2)
C3—C4—C5—C6	-0.1 (3)	O2—C14—C15—C16	-2.1 (2)

supplementary materials

C2-C1-C6-C5	-0.4 (2)	C11—C14—C15—C16	177.71 (14)
C2-C1-C6-C7	179.38 (15)	C14—C15—C16—O3	2.4 (2)
C4—C5—C6—C1	0.4 (3)	C14—C15—C16—C17	-176.10 (14)
C4—C5—C6—C7	-179.47 (17)	O3—C16—C17—C18	-3.0 (3)
C1—C6—C7—O1	-111.01 (17)	C15-C16-C17-C18	175.63 (18)
C5—C6—C7—O1	68.82 (19)	O3—C16—C17—O4	178.65 (13)
O1—C8—C9—C10	179.06 (15)	C15—C16—C17—O4	-2.7 (2)
C13—C8—C9—C10	-2.5 (3)	O4—C17—C18—C19	0.0 (2)
C8—C9—C10—C11	0.2 (3)	C16-C17-C18-C19	-178.42 (17)
C9-C10-C11-C12	1.7 (3)	C17—C18—C19—C20	0.0 (2)
C9—C10—C11—C14	-178.47 (15)	C18—C19—C20—O4	0.0 (2)
C10-C11-C12-C13	-1.3 (2)	C9—C8—O1—C7	-8.7 (2)
C14—C11—C12—C13	178.88 (14)	C13—C8—O1—C7	172.83 (13)
C11—C12—C13—C8	-1.0 (2)	C6—C7—O1—C8	-171.88 (13)
O1—C8—C13—C12	-178.53 (13)	C19—C20—O4—C17	0.0 (2)
C9—C8—C13—C12	2.9 (2)	C18—C17—O4—C20	-0.02 (19)
C10-C11-C14-O2	1.3 (2)	C16—C17—O4—C20	178.72 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O2—H2A…O3	1.15 (3)	1.38 (3)	2.5030 (16)	162 (2)

Fig. 1

